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auc.model Area under curve (AUC)
Description

auc.model calculates area under curve (AUC) for a given predicted values and observed target
variable.

Usage

auc.model (predictions, observed)

Arguments

predictions Model predictions.

observed Observed values of target variable.
Value

The command auc.model returns value of AUC.

See Also

bivariate for automatic bivariate analysis.

Examples

suppressMessages(library(PDtoolkit))

data(gcd)

#tcategorize numeric risk factor

gcd$maturity.bin <- ndr.bin(x = gcd$maturity, y = gcd$qual, y.type = "bina")[[2]]
#testimate simple logistic regression model

1r <- glm(qual ~ maturity.bin, family = "binomial”, data = gcd)

#calculate auc

auc.model (predictions = predict(lr, type = "response”, newdata = gcd),

observed = gcd$qual)



bivariate

bivariate Bivariate analysis

Description

bivariate returns the bivariate statistics for risk factors supplied in data frame db.

Implemented procedure expects all risk factors to be categorical, thus numeric risk factors should
be first categorized. Additionally, maximum number of groups per risk factor is set to 10, so risk
factors with more than 10 categories will not be processed automatically, but manual inspection
can be still done using woe. tbl and auc.model functions in order to produce the same statistics.
Results of both checks (risk factor class and number of categories), if identified, will be reported in
second element of function output - info data frame.

Bivariate report (first element of function output - results data frame) includes:

rf: Risk factor name.

bin: Risk factor group (bin).

no: Number of observations per bin.

ng: Number of good cases (where target is equal to 0) per bin.

nb: Number of bad cases (where target is equal to 1) per bin.

pct.o: Percentage of observations per bin.

pct.g: Percentage of good cases (where target is equal to 0) per bin.
pct.b: Percentage of bad cases (where target is equal to 1) per bin.
dr: Default rate per bin.

so: Number of all observations.

sg: Number of all good cases.

sb: Number of all bad cases.

dist.g: Distribution of good cases per bin.

dist.b: Distribution of bad cases per bin.

woe: WOE value.

iv.b: Information value per bin.

iv.s: Information value of risk factor (sum of individual bins’ information values).

auc: Area under curve of simple logistic regression model estimated as y ~ x, where y is
selected target variable and x is categorical risk factor.

Additional info report (second element of function output - info data frame), if produced, includes:

rf: Risk factor name.

reason.code: Reason code takes value 1 if inappropriate class of risk factor is identified, while
for check of maximum number of categories it takes value 2.

comment: Reason description.
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Usage

bivariate(db, target)

Arguments
db Data frame of risk factors and target variable supplied for bivariate analysis.
target Name of target variable within db argument.

Value

The command bivariate returns the list of two data frames. The first one contains bivariate metrics
while the second data frame reports results of above explained validations (class of the risk factors
and number of categories).

See Also

woe. tbl and auc.model for manual bivariate analysis.

Examples

suppressMessages(library(PDtoolkit))

data(ged)

#categorize numeric risk factors

gcd$age.bin <- ndr.bin(x = gcd$age, y = gcd$qual)[[2]]

gcd$age.bin.1 <- cut(x = gcd$age, breaks = 20)

gcd$maturity.bin <- ndr.bin(x = gcd$maturity, y = gcd$qual, y.type = "bina")[[2]]

gcd$amount.bin <- ndr.bin(x = gcd$amount, y = gcd$qual)[[2]]

str(ged)

#select target variable and categorized risk factors

gcd.bin <- gcd[, c("qual”, "age.bin”, "maturity.bin”, "amount.bin")]

#run bivariate analysis on data frame with only categorical risk factors

bivariate(db = gcd.bin, target = "qual")

#run bivariate analysis on data frame with mixed risk factors (categorical and numeric).

#for this example info table is produced

bivariate(db = gcd, target = "qual”)

#run woe table for risk factor with more than 10 modalities

woe.tbl(tbl = gcd, x = "age.bin.1", y = "qual")

#calculate auc for risk factor with more than 10 modalities

1r <- glm(qual ~ age.bin.1, family = "binomial”, data = gcd)

auc.model(predictions = predict(lr, type = "response”, newdata = gcd),
observed = gcd$qual)

boots.vld Bootstrap model validation

Description

boots.vld performs bootstrap model validation. The goal of this procedure is to generate main
model performance metrics such as absolute mean square error, root mean square error or area
under curve (AUC) based on resampling method.
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Usage

boots.vld(model, B = 1000, seed = 1122)

Arguments

model Model in use, an object of class inheriting from "glm".

B Number of bootstrap samples. Default is set to 1000.

seed Random seed needed for ensuring the result reproducibility. Default is 1122.
Value

The command boots. v1ld returns a list of two objects.
The first object (iter), returns iteration performance metrics.
The second object (summary), is the data frame of iterations averages of performance metrics.

Examples

suppressMessages(library(PDtoolkit))
data(loans)
#run stepFWD
res <- stepFWD(start.model = Creditability ~ 1,
p.value = 0.05,
coding = "WoE",
db = loans)
#check output elements
names(res)
#extract the final model
final.model <- res$model
#print coefficients
summary (final.model)$coefficients
#print head of coded development data
head(res$dev.db)
#calculate AUC
auc.model (predictions = predict(final.model, type = "response”, newdata = res$dev.db),
observed = res$dev.db$Creditability)
boots.vld (model = final.model, B = 10, seed = 1122)

cat.bin Categorical risk factor binning

Description

cat.bin implements three-stage binning procedure for categorical risk factors. The first stage is
possible correction for minimum percentage of observations. The second stage is possible correc-
tion for target rate (default rate), while the third one is possible correction for maximum number of
bins. Last stage implements procedure known as adjacent pooling algorithm (APA) which aims to
minimize information loss while iterative merging of the bins.
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Usage

cat.bin(
X!
Y,
sc = NA,

sc.merge = "none”,

min.pct.obs =

0.05,

min.avg.rate = 0.01,
max.groups = NA,

force.trend =

Arguments

X

y

SC

sc.merge

min.pct.obs

min.avg.rate

max.groups

force.trend

Value

"modalities”

Categorical risk factor.
Numeric target vector (binary).
Special case elements. Default value is NA.

Define how special cases will be treated. Available options are:

"none”, "first"”, "last”, "closest”. If "none” is selected, then the special
cases will be kept in separate bin. If "first” or "last” is selected, then the
special cases will be merged with first or last bin. Depending on sorting option
force. trend, first or last bin will be determined based on alphabetic order (if
force.trend is selected as "modalities"”) or on minimum or maximum de-
fault rate (if force. trend is selected as "dr"). If "closest” is selected, then
the special case will be merged with the bin that is closest based on default rate.
Merging of the special cases with other bins is performed at the beginning i.e.
before running any of three-stage procedures. Default value is "none”.

Minimum percentage of observations per bin. Default is 0.05 or minimum 30
observations.

Minimum default rate. Default is 0.01 or minimum 1 bad case for y 0/1.

Maximum number of bins (groups) allowed for analyzed risk factor. If in the
first two stages number of bins is less or equal to selected max.groups or if
max . groups is default value (NA), no adjustment is performed. Otherwise, APA
algorithm is applied which minimize information loss in further iterative process
of bin merging.

Defines how initial summary table will be ordered. Possible options are:
"modalities” and "dr". If "modalities” is selected, then merging will be
performed forward based on alphabetic order of risk factor modalities. On the
other hand, if "dr"” is selected, then bins merging will be performed forward
based on increasing order of default rate per modality. This direction of merging
is applied in the all three stages.

The command cat.bin generates a list of two objects. The first object, data frame summary. tbl
presents a summary table of final binning, while x. trans is a vector of new grouping values.
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References

Anderson, R. (2007). The credit scoring toolkit: theory and practice for retail credit risk manage-
ment and decision automation, Oxford University Press

Examples

suppressMessages(library(PDtoolkit))
data(loans)
#prepare risk factor Purpose for the analysis
loans$Purpose <- ifelse(nchar(loans$Purpose) == 2, loans$Purpose, pasted(”"@", loans$Purpose))
#artificially add missing values in order to show functions' features
loans$Purpose[1:6] <- NA
#run binning procedure
res <- cat.bin(x = loans$Purpose,
y = loans$Creditability,
sc = NA,
sc.merge = "none”,
min.pct.obs = 0.05,
min.avg.rate = 0.05,
max.groups = NA,
force.trend = "modalities”)
res[[1]]
#tcheck new risk factor against the original
table(loans$Purpose, res[[2]], useNA = "always")
#repeat the same process with setting max.groups to 4 and force.trend to dr
res <- cat.bin(x = loans$Purpose,
y = loans$Creditability,
sc = NA,
sc.merge = "none”,
min.pct.obs = 0.05,
min.avg.rate = 0.05,
max.groups = 4,
force.trend = "dr")
res[[1]1]
#check new risk factor against the original
table(loans$Purpose, res[[2]], useNA = "always")
#texample of shrinking number of groups for numeric risk factor
#copy exisitng numeric risk factor to new called maturity
loans$maturity <- loans$"Duration of Credit (month)”
#artificially add missing values in order to show functions' features
loans$maturity[1:10] <- NA
#categorize maturity with MAPA algorithim from monobin package
loans$maturity.bin <- cum.bin(x = loans$maturity,
y = loans$Creditability, g = 50)[[2]]
table(loans$maturity.bin)
#run binning procedure to decrease number of bins from the previous step
res <- cat.bin(x = loans$maturity.bin,
y = loans$Creditability,
sc = "SC",
sc.merge = "closest”,
min.pct.obs = 0.05,
min.avg.rate = 0.01,
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max.groups = 5,

force.trend = "modalities”)
res[[1]]
#check new risk factor against the original
table(loans$maturity.bin, res[[2]], useNA = "always")

cat.slice Slice categorical variable

Description

cat.slice implements manual re-coding of character vector values for a given mapping scheme.
This procedure is one of the helper functions which are handy for the model monitoring phase (i.e.
after model implementation).

Usage
cat.slice(x, mapping, sc = NA, sc.r = "SC")
Arguments
X Character vector to be re-coded.
mapping Data frame with compulsory columns: x.orig and x.mapp which represent the
mapping scheme. Column x.orig should contain unique values of original vec-
tor x, while x.mapp should contain corresponding mapping values.
sc Character vector with special case elements. Default value is NA.
sc.r Character vector used for replacement of special cases. If supplied as one ele-
ment vector, it will be recycled to the length of sc. Default value is "SC".
Value

The command cat . slice returns vector of re-coded values and special cases.

Examples

suppressMessages(library(PDtoolkit))
data(gced)
x <- gcd$maturity
#artificially add some special values
x[1:5] <- Inf
x[6:7] <= NA
mbin <- cum.bin(x = x, y = gcd$qual, sc.method = "together")
mbin[[1]]
gcd$x <- mbin[[2]]
cb <- cat.bin(x = gcd$x,
y = gcd$qual,
sc = "SC",
sc.merge = "none”,
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min.pct.obs = 0.05,
min.avg.rate = 0.05)
X <- gcd$x
mapping <- data.frame(x.orig = x, x.mapp = cb[[2]]1)%>%
group_by(x.orig, x.mapp) %>%
summarise(n = n(), .groups = "drop")
mapping <- data.frame(mappingl, -31)
sc <- cat.slice(x = x,
mapping = mapping,
sc = NA,
sc.r = "SC")
#compare automatic and manual re-coding
table(cb[[2]], useNA = "always")
table(sc, useNA = "always")

confusion.matrix Confusion matrix

Description

confusion.matrix returns confusion matrix along with accompanied performance metrics.

Usage

confusion.matrix(predictions, observed, cutoff)

Arguments

predictions Model predictions.

observed Observed values of target variable.

cutoff Cutoff value. Single value numeric vector between 0 and 1.
Value

The command confusion.matrix returns list of two objects. The first object is confusion matrix
table, while the second one is data frame with accompanied performance metrics.

Examples

suppressMessages(library(PDtoolkit))
data(loans)
#identify numeric risk factors
num.rf <- sapply(loans, is.numeric)
num.rf <- names(num.rf)[!names(num.rf)%in%"Creditability” & num.rf]
#discretized numeric risk factors using mdt.bin from monobin package
loans[, num.rf] <- sapply(num.rf, function(x)

mdt.bin(x = loans[, x], y = loans[, "Creditability"]1)[[2]])
str(loans)
res <- stepFWD(start.model = Creditability ~ 1,
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p.value = 0.05,
coding = "WoE",

db = loans)

names(res)

summary (res$model) $coefficients

loans$model.pred <- predict(res$model, type = "response”)

#confusion matrix

confusion.matrix(predictions = predict(res$model, type = "response”),
observed = loans$"Creditability”,
cutoff = 0.5)

constrained.logit Constrained logistic regression
Description

constrained.logit performs estimation of logistic regression with constrains on values of the
estimated coefficient.

Usage

constrained.logit(db, x, y, lower, upper)

Arguments
db Data set of risk factors and target variable.
X Character vector of risk factors (independent variables) used in logistic regres-
sion.
y Character vector of target (dependent variable) used in logistic regression.
lower Numeric vector of lower boundaries of the coefficients. This vector should con-
tain value of the intercept, therefore number of elements should be equal to
number of elements of the argument x plus one.
upper Numeric vector of upper boundaries of the coefficients. This vector should con-
tain value of the intercept, therefore number of elements should be equal to
number of elements of the argument x plus one.
Value

The command constrained. logit returns list of two vectors. The first vector contains values of
the estimated coefficients, while the second vector contains predictions of the constrained logistic
regression.
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Examples

suppressMessages(library(PDtoolkit))
data(loans)
#model 1
reg.1 <- glm(Creditability ~ ~Account Balance™, family = "binomial”, data = loans)
summary(reg.1)$coefficient
loans$pred.1 <- unname(predict(reg.1, type = "response"”))
#model 2
reg.2 <- glm(Creditability ~ ~Age (years)”, family = "binomial”, data = loans)
summary(reg.2)$coefficient
loans$pred.2 <- unname(predict(reg.2, type = "response”))
#integration
fm <- glm(Creditability ~ pred.1 + pred.2, family = "binomial”, data = loans)
summary (fm)$coefficient
fm.pred <- predict(fm, type = "response”, newdata = loans)
auc.model (predictions = fm.pred, observed = loans$Creditability)
#constrained integration (regression)
cl.r <- constrained.logit(db = loans,
x = c("pred.1", "pred.2"),
y = "Creditability”,
lower = c(-Inf, -Inf, -Inf),
upper = c(Inf, 4.5, Inf))
names(cl.r)
cl.r[["beta"]]
auc.model (predictions = cl.r[["prediction”]], observed = loans$Creditability)

create.partitions Create partitions (aka nested dummy variables)

Description

create.partitions performs creation of partitions (aka nested dummy variables). Using directly
into logistic regression, partitions provide insight into difference of log-odds of adjacent risk fac-
tor bins (groups). Adjacent bins are selected based on alphabetic order of analyzed risk factor
modalities, therefore it is important to ensure that modality labels are defined in line with expected
monotonicity or any other criterion that is considered while engineering the risk factors.

Usage

create.partitions(db)

Arguments

db Data set of risk factors to be converted into partitions.
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Value

The command create.partitions returns a list of two objects (data frames).

The first object (partitions), returns the data set with newly created nested dummy variables.
The second object (info), is the data frame that returns info on partition process. Set of quality
checks are performed and reported if any of them observed. Two of them are of terminal nature i.e.
if observed, risk factor is not processed further (less then two non-missing groups and more than 10
modalities) while the one provides only info (warning) as usually deviates from the main principles
of risk factor processing (less than 5% of observations per bin).

References

Scallan, G. (2011). Class(ic) Scorecards: Selecting Characteristics and Attributes in Logistic Re-
gression, Edinburgh Credit Scoring Conference.

Examples

suppressMessages(library(PDtoolkit))
data(loans)
#identify numeric risk factors
num.rf <- sapply(loans, is.numeric)
num.rf <- names(num.rf)[!names(num.rf)%in%"Creditability” & num.rf]
#discretized numeric risk factors using ndr.bin from monobin package
loans[, num.rf] <- sapply(num.rf, function(x)
cum.bin(x = loans[, x], y = loans[, "Creditability”1)[[21]1)
str(loans)
loans.p <- create.partitions(db = loans[, num.rf])
head(loans.p[["partitions”]1])
loans.p[["info"1]
#bring target to partitions
db.p <- cbind.data.frame(Creditability = loans$Creditability, loans.p[[1]1])
#prepare risk factors for stepMIV
db.p[, -11 <- sapply(db.p[, -1]1, as.character)
#run stepMIV
res <- stepMIV(start.model = Creditability ~ 1,
miv.threshold = 0.02,
m.ch.p.val = 0.05,
coding = "dummy”,
db = db.p)
#check output elements
names(res)
#extract the final model
final.model <- res$model
#print coefficients
summary (final.model)$coefficients

cutoff.palette Palette of cutoff values that minimize and maximize metrics from the
confusion matrix
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Description

cutoff.palette returns confusion matrix along with accompanied performance metrics.

Usage

cutoff.palette(predictions, observed, min.pct.obs = ©0.05, min.pct.def = 0.01)

Arguments
predictions Model predictions.
observed Observed values of target variable.
min.pct.obs Minimum percentage of observations. Used to select boundaries of cutoff val-
ues. Default value is 0.05.
min.pct.def Minimum percentage of default. Used to select boundaries of cutoff values.
Default value is 0.01.
Value

The command cutoff.palette returns data frame with minimum and maximum values of each
confusion matrix metric along with optimized cutoff itself.

Examples

suppressMessages(library(PDtoolkit))
data(loans)
#identify numeric risk factors
num.rf <- sapply(loans, is.numeric)
num.rf <- names(num.rf)[!names(num.rf)%in%"Creditability” & num.rf]
#discretized numeric risk factors using mdt.bin from monobin package
loans[, num.rf] <- sapply(num.rf, function(x)
mdt.bin(x = loans[, x1, y = loans[, "Creditability”]1)[[2]11)
str(loans)
res <- stepFWD(start.model = Creditability ~ 1,
p.value = 0.05,
coding = "WoE",
db = loans)
#run cutoff optimization
cop <- cutoff.palette(predictions = predict(res$model, type = "response"),
observed = loans$"Creditability”,
min.pct.obs = 0.05,
min.pct.def = 0.01)
cop
confusion.matrix(predictions = predict(res$model, type = "response"”),
observed = loans$"Creditability”,
cutoff = cop$cutoff.max[cop$metrickin%"f1.score"])
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decision.tree

Custom decision tree algorithm

Description

decision. tree runs customized decision tree algorithm. Customization refers to minimum per-
centage of observations and defaults in each node, maximum tree depth, monotonicity condition at
each splitting node and statistical test (test of two proportions) used for node splitting.

Usage

decision.tree(

db,
rf,
target,

min.pct.obs = 0.05,

min.avg.rate
0.5,
NA,

p.value =

max.depth =
monotonicity

Arguments

db
rf
target

min.pct.obs

min.avg.rate
p.value
max.depth

monotonicity

Value

=0.01,

Data frame of risk factors and target variable supplied for interaction extraction.
Character vector of risk factor names on which decision tree is run.
Name of target variable (default indicator 0/1) within db argument.

Minimum percentage of observation in each leaf. Default is 0.05 or 30 observa-
tions.

Minimum percentage of defaults in each leaf. Default is 0.01 or 1 default case.
Significance level of test of two proportions for splitting criteria. Default is 0.05.
Maximum tree depth.

Logical indicator. If TRUE, observed trend between risk factor and target will be
preserved in splitting node.

The command decision. tree returns a object of class cdt. For details on output elements see the

Examples.

See Also

predict.cdt
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Examples

suppressMessages(library(PDtoolkit))
data(loans)
#modify risk factors in order to show how the function works with missing values
loans$"Account Balance”[1:10] <- NA

loans$"Duration of Credit (month)"[c(13, 15)] <- NA
tree.res <- decision.tree(db = loans,

rf = c("Account Balance”, "Duration of Credit (month)"),
target = "Creditability”,

min.pct.obs = 0.05,

min.avg.rate = 0.01,

p.value = 0.05,

max.depth = NA,

monotonicity = TRUE)

str(tree.res)

dp.testing Testing the discriminatory power of PD rating model

Description

dp.testing performs testing of discriminatory power of the model in use applied to application
portfolio in comparison to the discriminatory power from the moment of development. Testing is
performed based on area under curve (AUC) from the application portfolio and development sample
under assumption that latter is a deterministic (as given) and that test statistics follow the normal
distribution. Standard error of AUC for application portfolio is calculated as proposed by Hanley
and McNeil (see References).

Usage

dp.testing(app.port, def.ind, pdc, auc.test, alternative, alpha = 0.05)

Arguments
app.port Application portfolio (data frame) which contains default indicator (0/1) and
calibrated probabilities of default (PD) in use.
def.ind Name of the column that represents observed default indicator (0/1).
pdc Name of the column that represent calibrated PD in use.
auc.test Value of tested AUC (usually AUC from development sample).
alternative Alternative hypothesis. Available options are: "less”, "greater”, "two.sided".
alpha Significance level of p-value for hypothesis testing. Default is 0.05.
Details

Due to the fact that test of discriminatory power is usually implemented on the application port-
folio, certain prerequisites are needed to be fulfilled. In the first place model should be developed
and rating scale should be formed. In order to reflect appropriate role and right moment of tests
application, presented simplified example covers all steps before test implementation.
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Value

The command dp. testing returns a data frame with input parameters along with hypothesis testing
metrics such as estimated difference of observed (application portfolio) and testing AUC, standard
error of observed AUC, p-value of testing procedure and accepted hypothesis.

References

Hanley J. and McNeil B. (1982). The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology (1982) 43 (1) pp. 29-36.

Examples

suppressMessages(library(PDtoolkit))
data(loans)
#estimate some dummy model
mod.frm <- “Creditability” ~ “Account Balance™ + ~Duration of Credit (month)~ +
“Age (years)®
lr.mod <- glm(mod.frm, family = "binomial”, data = loans)
summary (1lr.mod)$coefficients
#model predictions
loans$pred <- unname(predict(lr.mod, type = "response”, newdata = loans))
#scale probabilities
loans$score <- scaled.score(probs = loans$pred, score = 600, odd = 50/1, pdo = 20)
#group scores into rating
loans$rating <- sts.bin(x = round(loans$score), y = loans$Creditability, y.type = "bina"”)[[2]]
#create rating scale
rs <- loans %>%
group_by(rating) %>%
summarise(no = n(),
nb = sum(Creditability),
ng = sum(1 - Creditability)) %>%
mutate(dr = nb / no)
rs
#calcualte portfolio default rate
sum(rs$dr * rs$no / sum(rs$no))
#calibrate rating scale to central tendency of 27% with minimum PD of 5%
ct <- 0.27
min.pd <- 0.05
rs$pd <- rs.calibration(rs = rs,

dr = "dr",
W= "no",
ct = ct,

min.pd = min.pd,
method = "log.odds.ab")[[1]]
#check
rs
sum(rs$pd * rs$no / sum(rs$no))
#bring calibrated PDs to the development sample
loans <- merge(loans, rs, by = "rating”, all.x = TRUE)
#calculate development AUC
auc.dev <- auc.model(predictions = loans$pd, observed = loans$Creditability)
auc.dev
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#simulate some dummy application portfolio
set.seed(321)
app.port <- loans[sample(1:nrow(loans), 400), ]
#calculate application portfolio AUC
auc.app <- auc.model(predictions = app.port$pd, observed = app.port$Creditability)
auc.app
#test deterioration of descriminatory power measured by AUC
dp.testing(app.port = app.port,
def.ind = "Creditability”,
pdc = "pd"”, auc.test = 0.7557,

alternative = "less”,
alpha = 0.05)
embedded.blocks Embedded blocks regression
Description

embedded.blocks performs blockwise regression where the predictions of each blocks’ model is
used as an risk factor for the model of the following block.

Usage

embedded.blocks(
method,
target,
db,
coding = "WoE",
blocks,
p.value = 0.05,
miv.threshold = 0.02,
m.ch.p.val = 0.05

)
Arguments

method Regression method applied on each block. Available methods: "stepMIV”,
"stepFWD", "stepRPC", "stepFWDr", and "stepRPCr".

target Name of target variable within db argument.

db Modeling data with risk factors and target variable.

coding Type of risk factor coding within the model. Available options are: "WoE" and
"dummy”. If "WoE" is selected, then modalities of the risk factors are replaced
by WOoE values, while for "dummy"” option dummies (0/1) will be created for n-1
modalities where n is total number of modalities of analyzed risk factor.

blocks Data frame with defined risk factor groups. It has to contain the following

columns: rf and block.
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p.value Significance level of p-value for the estimated coefficient. For WoE coding this
value is is directly compared to p-value of the estimated coefficient, while for
dummy coding multiple Wald test is employed and its p-value is used for com-
parison with selected threshold (p.value). This argument is applicable only for
"stepFWD" and "stepRPC" selected methods.

miv.threshold MIV (marginal information value) entrance threshold applicable only for code"stepMIV"
method. Only the risk factors with MIV higher than the threshold are candidate
for the new model. Additional criteria is that MIV value should significantly
separate good from bad cases measured by marginal chi-square test.

m.ch.p.val Significance level of p-value for marginal chi-square test applicable only for
code"stepMIV" method. This test additionally supports MIV value of candidate
risk factor for final decision.

Value

The command embedded. blocks returns a list of three objects.

The first object (model) is the list of the models of each block (an object of class inheriting from
”glm”).

The second object (steps), is the data frame with risk factors selected from the each block.

The third object (dev . db), returns the list of block’s model development databases.

References

Anderson, R.A. (2021). Credit Intelligence & Modelling, Many Paths through the Forest of Credit
Rating and Scoring, OUP Oxford

See Also

staged.blocks, ensemble.blocks, stepMIV, stepFWD, stepRPC, stepFWDr and stepRPCr.

Examples

suppressMessages(library(PDtoolkit))
data(loans)
#create risk factor priority groups
rf.all <- names(loans)[-1]
set.seed(22)
blocks <- data.frame(rf = rf.all, block = sample(1:3, length(rf.all), rep = TRUE))
blocks <- blocks[order(blocks$block), ]
blocks
#method: stepFWDr
res <- embedded.blocks(method = "stepFWDr",
target = "Creditability”,
db = loans,
blocks = blocks,
p.value = 0.05)
names(res)
nb <- length(res[["models"]])
res$models[[nb]]
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auc.model (predictions = predict(res$models[[nb]], type = "response”,
newdata = res$dev.db[[nb]]),
observed = res$dev.db[[nb]]$Creditability)

encode.woe Encode WoE

Description

encode.woe implements replacement of character vector values with WoE values for a given map-
ping scheme. This procedure is one of the helper functions which are handy for the model monitor-
ing phase (i.e. after model implementation).

Usage

encode.woe(x, mapping)

Arguments
X Character vector to be re-coded.
mapping Data frame with compulsory columns: x.mod and x.woe which represents the
mapping scheme. Column x . mod should contain unique values of original vector
x, while x.woe should contain corresponding mapping values.
Value

The command encode . woe returns vector of re-coded WoE values.

Examples

suppressMessages(library(PDtoolkit))

data(gced)

mbin <- cum.bin(x = gcd$maturity, y = gcd$qual, sc.method = "together")

mbin[[1]]

table(mbin[[2]], useNA = "always")

gcd$x.mod <- mbin[[2]]

woe.rep <- replace.woe(db = gcd[, c("qual”, "x.mod")], target = "qual")

gcd$x.woe <- woe.rep[[1]1]$x

mapping <- data.frame(x.mod = gcd$x.mod, x.woe = gcd$x.woe)%>%
group_by(x.mod, x.woe) %>%
summarise(n = n(), .groups = "drop")

mapping <- data.frame(mappingl[, -31)

ewoe <- encode.woe(x = gcd$x.mod, mapping = mapping)

identical (ewoe, woe.rep[[1]1]1$x)
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ensemble.blocks Ensemble blocks regression

Description

ensemble.blocks performs blockwise regression where the predictions of each blocks’ model are
integrated into a final model. The final model is estimated in the form of logistic regression with-
out any check of the estimated coefficients (e.g. statistical significance or sign of the estimated
coefficients).

Usage

ensemble.blocks(
method,
target,
db,
coding = "WoE",
blocks,
p.value = 0.05,
miv.threshold = 0.02,
m.ch.p.val = 0.05

)
Arguments

method Regression method applied on each block. Available methods: "stepMIV”,
"stepFWD", "stepRPC", "stepFWDr", and "stepRPCr".

target Name of target variable within db argument.

db Modeling data with risk factors and target variable.

coding Type of risk factor coding within the model. Available options are: "WoE" and
"dummy”. If "WoE" is selected, then modalities of the risk factors are replaced
by WoE values, while for "dummy" option dummies (0/1) will be created for n-1
modalities where n is total number of modalities of analyzed risk factor.

blocks Data frame with defined risk factor groups. It has to contain the following
columns: rf and block.

p.value Significance level of p-value for the estimated coefficient. For WoE coding this

value is is directly compared to p-value of the estimated coefficient, while for
dummy coding multiple Wald test is employed and its p-value is used for com-
parison with selected threshold (p.value). This argument is applicable only for
"stepFWD" and "stepRPC" selected methods.

miv.threshold MIV (marginal information value) entrance threshold applicable only for code"stepMIV"
method. Only the risk factors with MIV higher than the threshold are candidate
for the new model. Additional criteria is that MIV value should significantly
separate good from bad cases measured by marginal chi-square test.
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m.ch.p.val Significance level of p-value for marginal chi-square test applicable only for
code"stepMIV" method. This test additionally supports MIV value of candidate
risk factor for final decision.

Value

The command embeded . blocks returns a list of three objects.

The first object (model) is the list of the models of each block (an object of class inheriting from
”glm”).

The second object (steps), is the data frame with risk factors selected from the each block.

The third object (dev . db), returns the list of block’s model development databases.

References

Anderson, R.A. (2021). Credit Intelligence & Modelling, Many Paths through the Forest of Credit
Rating and Scoring, OUP Oxford

See Also

staged.blocks, embedded.blocks, stepMIV, stepFWD, stepRPC, stepFWDr and stepRPCr.

Examples

suppressMessages(library(PDtoolkit))
data(loans)
#create risk factor priority groups
rf.all <- names(loans)[-1]
set.seed(22)
blocks <- data.frame(rf = rf.all, block = sample(1:3, length(rf.all), rep = TRUE))
blocks <- blocks[order(blocks$block), 1
blocks
#method: stepRPCr
res <- ensemble.blocks(method = "stepRPCr",
target = "Creditability”,
db = loans,
blocks = blocks,
p.value = 0.05)

names(res)

nb <- length(res[["models"”]1])

res$models[[nb]]

auc.model (predictions = predict(res$models[[nb]], type = "response”,

newdata = res$dev.db[[nb]l]),
observed = res$dev.db[[nb]]$Creditability)
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evrs

Modelling the Economic Value of Credit Rating System

Description

evrs calculates the economic benefits of improved PD model based on increase of portfolio return.
Implemented algorithm replicates the framework presented in the Reference under assumption that
bank adopts continuous PD rating scale. Despite this assumption, results are almost identical for
scenarios of base case portfolio from the Reference.

Usage

evrs(
db,
pd,

benchmark,

lgd,
target,

sigma = NA,

r,

elasticity,
prob.to.leave.threshold,
sim.num = 500,

seed = 991
)
Arguments

db Data frame with at least the following columns: default indicator (target), PDs
of model in use, PDs of benchmark model and LGD values.

pd Name of PD of model in use within db argument.

benchmark Name of PD of benchmark model within db argument.

lgd Name of LGD values within db argument.

target Name of target (default indicator 0/1) within db argument.

sigma Measurement error of model in use. If default value (NA) is passed, then mea-
surement error is calculated as standard deviation of PD difference of model in
use and benchmark model.

r Risk-free rate.

elasticity Elasticity parameter used to define customer churn in case of loan overpricing.

prob.to.leave.threshold

sim.num

seed

Threshold for customers’ probability to leave in case of loan overpricing.
Number of simulations. Default is 500.

Random seed to ensure reproducibility. Default is 991.
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Value

The command evrs returns a list of two elements. The first element is data frame summary. tbl
and it provides simulation summary: number of simulations, number of successful simulations,
population size (number of observations of supplied db data frame), measurement error, average
churn value (number of customers that left the portfolio due to the overpricing), average return
of simulated portfolios, return of benchmark portfolio and return difference (main result of the
simulation). The second element is numeric vector of return averages of simulated portfolios.

References

Jankowitsch at al. (2007). Modelling the economic value of credit rating systems. Journal of
Banking & Finance, Volume 31, Issue 1, doi:10.1016/j.jbankfin.2006.01.003.

Examples

suppressMessages(library(PDtoolkit))

data(loans)

#simulate model in use

miu.formula <- Creditability ~ “Age (years)” + “Duration of Credit (month)” +
“Value Savings/Stocks™ + ~Purpose”

miu <- glm(miu.formula, family = "binomial”, data = loans)

miu.pd <- unname(predict(miu, type = "response”, newdata = loans))

#simulate benchmark model with interaction.transformer support
bnm.pack <- stepFWDr(start.model = Creditability ~ 1,
p.value = 0.05,
db = loans,
check.start.model = TRUE,
offset.vals = NULL)
bnm <- bnm.pack$model
bnm.pd <- unname(predict(bnm, type = "response”, newdata = bnm.pack$dev.db))
#prepare data for evrs function
db <- data.frame("Creditability” = loans$Creditability,

pd = miu.pd,
pd.benchmark = bnm.pd,
lgd = 0.75)

#calculate the difference in portfolio return between model in use the benchmark model
res <- evrs(db = db,

pd = "pd”,

benchmark = "pd.benchmark”,

lgd = "1gd",

target = "Creditability”,

sigma = NA,

r=20.03,

elasticity = 100,

prob.to.leave.threshold = 9.5,

sim.num = 500,

seed = 991)

names(res)

#print simulation summary table

res[["summary.tbl"]]

#portfolio return increase in case of using benchmark model
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res[["summary.tbl”]1][, "return.difference”, drop = FALSE]
#summary of simulated returns
summary(res[["return.sim"]1])

fairness.vld

Model fairness validation

Description

fairness.vld performs fairness validation for a given sensitive attribute and selected outcome.
Sensitive attribute should be categorical variable with reasonable number of modalities, while out-
come can be categorical (e.g. reject/accept indicator or rating grade) or continuous (e.g. interest
rate or amount). Depending on model type outcome (see argument mod . outcome. type) Chi-square
test or Wald test is applied.

Usage

fairness.vld(
db,
sensitive,
obs.outcome,
mod . outcome,

conditional =

NULL,

mod.outcome. type,

p.value

Arguments

db

sensitive
obs.outcome
mod . outcome

conditional

Data frame with sensitive attribute, observed outcome, model outcome and con-
ditional attribute.

Name of sensitive attribute within db.
Name of observed outcome within db.
Name of model outcome within db.

Name of conditional attribute within db. It is used for calculation of conditional
statistical parity. Default value is NULL.

mod.outcome. type

p.value

Type of model outcome. Possible values are disc (discrete outcome) and cont
(continuous).

Significance level of applied statistical test (chi-square or Wald test).
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Value

The command fairness.vld returns a list of three data frames.

The first object (SP), provides results of statistical parity testing.

The second object (CSP), provides results of conditional statistical parity testing. This object will
be returned only if conditional attributed is supplied.

The third object (EO), provides results of equal opportunity testing.

References

Hurlin, Christophe and Perignon, Christophe and Saurin, Sebastien (2022), The Fairness of Credit
Scoring Models. HEC Paris Research Paper No. FIN-2021-1411

Examples

suppressMessages(library(PDtoolkit))
#build hypothetical model
data(loans)
#numeric risk factors
#num.rf <- sapply(loans, is.numeric)
#num.rf <- names(num.rf)[!names(num.rf)%in%"Creditability” & num.rf]
num.rf <- c("Credit Amount”, "Age (years)")
#discretized numeric risk factors using ndr.bin from monobin package
loans[, num.rf] <- sapply(num.rf, function(x)
ndr.bin(x = loans[, x], y = loans[, "Creditability”1)[[2]1])
str(loans)
#run stepMIV
rf <- c("Account Balance”, "Payment Status of Previous Credit”,
"Purpose”, "Value Savings/Stocks”, "Credit Amount”,
"Age (years)", "Instalment per cent”, "Foreign Worker")

res <- stepMIV(start.model = Creditability ~ 1,

miv.threshold = 0.02,

m.ch.p.val = 0.05,

coding = "WoE",

coding.start.model = FALSE,

db = loans[, c("Creditability”, rf)1)
#print coefficients
summary (res$model)$coefficients

#prepare data frame for fairness validation
db.fa <- data.frame(Creditability = loans$Creditability,
mpred = predict(res$model, type = "response”, newdata = res$dev.db))
#add hypothetical reject/accept indicator
db.fa$rai <- ifelse(db.fa$mpred > 0.5, 1, @)
#add hypothetical rating
db.fa$rating <- sts.bin(x = round(db.fa$mpred, 4), y = db.fa$Creditability)[[2]]
#add hypothetical interest rate
ir.r <- seq(0.03, 0.10, length.out = 6)
names(ir.r) <- sort(unique(db.fa$rating))
db.fa$ir <- ir.r[db.fas$rating]
#add hypothetical sensitive attribute
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db.fa$sensitive.1 <- ifelse(loans$”Sex & Marital Status"%in%2, 1, @) #not in a model
db.fa$sensitive.2 <- ifelse(loans$"Age (years)"”%in%"@3 [35,Inf)", 1, @) #in a model
#add some attributes for calculation of conditional statistical parity

db.fa$"Credit Amount” <- loans$”Credit Amount”

head(db.fa)

#discrete model outcome - sensitive attribute not in a model
fairness.vld(db = db.fa,

sensitive = "sensitive.1”,
obs.outcome = "Creditability”,
mod.outcome = "rai”,
conditional = "Credit Amount”,
mod.outcome. type = "disc”,

p.value = 0.05)
##discrete model outcome - sensitive attribute in a model
#fairness.vld(db = db.fa,

# sensitive = "sensitive.2",

#  obs.outcome = "Creditability”,
# mod.outcome = "rai”,

# conditional = "Credit Amount”,
#  mod.outcome.type = "disc”,

# p.value = 0.05)

##continuous outcome - sensitive attribute not in a model
#fairness.vld(db = db.fa,

# sensitive = "sensitive.1"”,

#  obs.outcome = "Creditability”,
# mod.outcome = "ir",

# conditional = "Credit Amount”,
#  mod.outcome.type = "cont",

# p.value = 0.05)

#continuous outcome - sensitive attribute in a model
fairness.vld(db = db.fa,

sensitive = "sensitive.2",
obs.outcome = "Creditability”,
mod.outcome = "ir",
conditional = "Credit Amount”,
mod.outcome. type = "cont”,

p.value = 0.05)

heterogeneity Testing heterogeneity of the PD rating model

Description
heterogeneity performs heterogeneity testing of PD model based on the rating grades. This test
is usually applied on application portfolio, but it can be applied also on model development sample.
Usage

heterogeneity(app.port, def.ind, rating, alpha = 0.05)
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Arguments

app.port Application portfolio (data frame) which contains default indicator (0/1) and

ratings in use.

def.ind Name of the column that represents observed default indicator (0/1).

rating Name of the column that represent rating grades in use.

alpha Significance level of p-value for two proportion test. Default is 0.05.
Details

Testing procedure starts with summarizing the number of observations and defaults per rating grade.
After that, two proportion test is applied on adjacent rating grades. Testing hypothesis is that default
rate of grade 1i is less or greater than default rate of grade i - 1, where i takes the values from 2
to the number of unique grades. Direction of alternative hypothesis (less or greater) is determined
automatically based on correlation direction of observed default on rating grades. Incomplete cases,
identified based on default indicator (def.ind) and rating grade (rating ) columns are excluded
from the summary table and testing procedure. If identified, warning will be returned.

Value

The command heterogeneity returns a data frame with the following columns:

* rating: Unique values of rating grades from application portfolio.
* no: Number of complete observations.

* nb: Number of defaults (bad cases) in complete observations.

* p.val: Test p-value (two proportion test of adjacent rating grades).
* alpha: Selected significance level.

¢ res: Accepted hypothesis.

Examples

suppressMessages(library(PDtoolkit))

data(loans)

#estimate some dummy model

mod.frm <- “Creditability™ ~ “Account Balance™ + “Duration of Credit (month)> +
“Age (years)™ + “Value Savings/Stocks®

lr.mod <- glm(mod.frm, family = "binomial”, data = loans)

summary (1r.mod)$coefficients

#model predictions

loans$pred <- unname(predict(lr.mod, type = "response”, newdata = loans))

#scale probabilities

loans$score <- scaled.score(probs = loans$pred, score = 600, odd = 50/1, pdo = 20)

#group scores into ratings

loans$rating.1 <- sts.bin(x = round(loans$score), y = loans$Creditability, y.type = "bina”)[[2]]
#group probabilities into ratings

loans$rating.2 <- sts.bin(x = round(loans$pred, 4), y = loans$Creditability, y.type = "bina”)[[2]]
#simulate dummy application portfolio

set.seed(1984)

app.port <- loans[sample(1:nrow(loans), 400, rep = TRUE), ]
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#run heterogeneity test on ratings based on the scaled score
#higher score lower default rate
heterogeneity(app.port = app.port,
def.ind = "Creditability”,
rating = "rating.1",
alpha = 0.05)
#run test on predicted default rate - direction of the test is changed
heterogeneity(app.port = app.port,
def.ind = "Creditability”,

rating = "rating.2",
alpha = 0.05)
hhi Herfindahl-Hirschman Index (HHI)
Description

hhi performs calculation on Herfindahl-Hirschman Index.

Usage
hhi(x)
Arguments
X Numeric vector of input values (e.g. number of observations or sum of exposure
per rating grade).
Value

The command hhinormal. test returns single element numeric vector of HHI value.

Examples

#simulate PD model and rating scale
suppressMessages(library(PDtoolkit))
data(loans)
res <- stepFWDr(start.model = Creditability ~ 1,
p.value = 0.05,
db = loans)
mod.predictions <- unname(predict(res$model, type = "response”))
rating.scale <- sts.bin(y = loans$Creditability, x = mod.predictions)[[1]]
#calculate HHI
hhi(x = rating.scale$no)
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homogeneity Testing homogeneity of the PD rating model

Description

homogeneity performs homogeneity testing of PD model based on the rating grades and selected
segment. This test is usually applied on application portfolio, but it can be applied also on model
development sample. Additionally, this method requires higher number of observations per segment
modalities within each rating in order to produce available results. For segments with less than 30
observations, test is not performed. If as a segment user selects numeric variable from the applica-
tion portfolio, variable will be grouped in selected number of groups (argument segment . num).

Usage

homogeneity(app.port, def.ind, rating, segment, segment.num, alpha = 0.05)

Arguments
app.port Application portfolio (data frame) which contains default indicator (0/1), ratings
in use and variable used as a segment.
def.ind Name of the column that represents observed default indicator (0/1).
rating Name of the column that represent rating grades in use.
segment Name of the column that represent testing segments. If it is of numeric type, than
it is first grouped into segment . num of groups otherwise is it used as supplied.
segment.num Number of groups used for numeric variables supplied as a segment. Only ap-
plicable if segment is of numeric type.
alpha Significance level of p-value for two proportion test. Default is 0.05.
Details

Testing procedure is implemented for each rating separately comparing default rate from one seg-
ment modality to the default rate from the rest of segment modalities.

Value

The command homogeneity returns a data frame with the following columns:

* segment.var: Variable used as a segment.
* rating: Unique values of rating grades from application portfolio..

* segment.mod: Tested segment modality. Default rate from this segment is compared with
default rate from the rest of the modalities within the each rating.

* no: Number of observations of the analyzed rating.
* nb: Number of defaults (bad cases) of the analyzed rating.

* no.segment: Number of observations of the analyzed segment modality.
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* no.rest: Number of observations of the rest of the segment modalities.
* nb.segment: Number of defaults of the analyzed segment modality.

* nb.rest: Number of defaults of the rest of the segment modalities.

* p.val: Two proportion test (two sided) p-value.

* alpha: Selected significance level.

* res: Accepted hypothesis.

Examples

suppressMessages(library(PDtoolkit))

data(loans)
#estimate some dummy model
mod.frm <- “Creditability”™ ~ “Account Balance™ + ~Duration of Credit (month)~ +

“Age (years)™ + “Value Savings/Stocks™ +
“Duration in Current address~

1r.mod <- glm(mod.frm, family = "binomial”, data = loans)
summary(1lr.mod)$coefficients
#model predictions

loans$pred <- unname(predict(lr.mod, type = "response”, newdata = loans))
#scale probabilities

loans$score <- scaled.score(probs = loans$pred, score = 600, odd
#group scores into ratings

loans$rating <- ndr.bin(x = round(loans$score), y = loans$Creditability, y.type = "bina")[[2]]
#simulate dummy application portfolio (oversample loans data)

set.seed(2211)

app.port <- loans[sample(1:nrow(loans), 2500, rep = TRUE), 1]
#run homogeneity test on ratings based on the Credit Amount segments

homogeneity(app.port = app.port,

def.ind = "Creditability”,

rating = "rating”,

segment = "Credit Amount”,

segment.num = 4,

alpha = 0.05)

50/1, pdo = 20)

imp.outliers Imputation methods for outliers

Description

imp.outliers replaces predefined quantum of the smallest and largest values by the less extreme
values. This procedure is applicable only to the numeric risk factors.

Usage

imp.outliers(
db,
sc = c(NA, NaN, Inf, -Inf),
method = "iqgr",
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range = 1.5,
upper.pct = 0.95,

lower.pct = 0.05
)
Arguments

db Data frame of risk factors supplied for imputation.

sc Vector of all special case elements. Default values are c(NA, NaN, Inf). Those
values will be excluded from calculation of imputed value and replacements.

method Imputation method. Available options are: "iqr" and "percentile”. Method
igr performs identification of outliers by the method applied in boxplot 5-
figures, while for percentile method user defines lower and upper limits for
replacement. Default value is "iqr”.

range Determines how far the plot whiskers extend out from the box. If range is pos-
itive, the whiskers extend to the most extreme data point which is no more than
range times the interquartile range from the box. A value of zero causes the
whiskers to extend to the data extremes. Default range is set to is 1.5.

upper.pct Upper limit for percentile method. All values above this limit will be replaced
by the value identified at this percentile. Default value is set to 95! percentile
(0.95). This parameter is used only if selected method is percentile.

lower.pct Lower limit for percentile method. All values below this limit will be replaced
by the value identified at this percentile. Default value is set to 5" percentile
(0.05). This parameter is used only if selected method is percentile.

Value

This function returns list of two data frames. The first data frame contains analyzed risk factors
with imputed values for outliers, while the second data frame presents the imputation report. Using
the imputation report, for each risk factor, user can inspect imputed info (info), imputation method
(imputation.method), imputed value (imputation.val.upper and imputation.val.lower), num-
ber of imputed observations (imputation.num.upper and imputation.num. lower).

Examples

suppressMessages(library(PDtoolkit))
data(gcd)
gcd$age[1:20] <- NA
gcd$age.bin <- ndr.bin(x = gcd$age, y = gcd$qual, sc.method = "separately”, y.type = "bina")[[2]]
gcd$dummy1 <- NA
imput.res.1 <- imp.outliers(db = gcd[, -1],
method = "igr",
range = 1.5)
#analyzed risk factors with imputed values
head(imput.res.1[[11])
#imputation report
imput.res.1[[2]]
#tpercentile method
imput.res.2 <- imp.outliers(db = gcd[, -117,
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method = "percentile”,
upper.pct = 0.95,
lower.pct = 0.05)
#analyzed risk factors with imputed values
head(imput.res.2[[11])
#imputation report
imput.res.2[[2]]

imp.sc Imputation methods for special cases

Description

imp.sc imputes value for special cases.

Usage

imp.sc(
db,
sc.all = c(NA, NaN, Inf, -Inf),
sc.replace = c(NA, NaN, Inf, -Inf),

method.num = "automatic”,
p.val = 0.05
)
Arguments
db Data frame of risk factors supplied for imputation.
sc.all Vector of all special case elements. Default values are c(NA, NaN, Inf).
sc.replace Vector of special case element to be replaced. Default values are c(NA, NaN,
Inf).
method. num Imputation method for numeric risk factors. Available options are:
"automatic”, "mean”, "median”, "zero".
p.val Significance level of p-value for Pearson normality test. Applicable only if
method. numis automatic.
Value

This function returns list of two data frames. The first data frame contains analyzed risk factors
with imputed values for special cases, while the second data frame presents the imputation report.
Using the imputation report, for each risk factor, user can inspect imputed info (info), imputation
method (imputation.method), imputed value (imputed.value), number of imputed observations
(imputation.num) and imputed mode (imputed.mode - applicable only for categorical risk factors)
for each risk factor.



34 interaction.transformer

Examples

suppressMessages(library(PDtoolkit))
data(gcd)
gcd$age[1:20] <- NA
gcd$age.bin <- ndr.bin(x = gcd$age, y = gcd$qual, sc.method = "separately”, y.type = "bina")[[2]]
gcd$dummy1 <- NA
#select risk factors for which we want to impute missing values (NA)
db.imp <- gcd[, c("age", "age.bin"”, "dummy1")]
colSums(is.na(db.imp))
imput.res <- imp.sc(db = db.imp,
method.num = "automatic”,
p.val = 0.05)
#analyzed risk factors with imputed values
head(imput.res[[1]])
#imputation report
imput.res[[2]]

interaction.transformer
Extract risk factors interaction from decision tree

Description

interaction.transformer extracts the interaction between supplied risk factors from decision
tree. It implements customized decision tree algorithm that takes into account different conditions
such as minimum percentage of observations and defaults in each node, maximum tree depth and
monotonicity condition at each splitting node. Gini index is used as metric for node splitting .

Usage

interaction.transformer(
db,
rf,
target,
min.pct.obs,
min.avg.rate,
max.depth,
monotonicity,
create.interaction.rf

Arguments
db Data frame of risk factors and target variable supplied for interaction extraction.
rf Character vector of risk factor names on which decision tree is run.
target Name of target variable (default indicator 0/1) within db argument.

min.pct.obs Minimum percentage of observation in each leaf.
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min.avg.rate Minimum percentage of defaults in each leaf.
max.depth Maximum number of splits.

monotonicity Logical indicator. If TRUE, observed trend between risk factor and target will be
preserved in splitting node.

create.interaction.rf
Logical indicator. If TRUE, second element of the output will be data frame with
interaction modalities.

Value

The command interaction. transformer returns a list of two data frames. The first data frame
provides the tree summary. The second data frame is a new risk factor extracted from decision tree.

Examples

suppressMessages(library(PDtoolkit))
data(loans)
#modify risk factors in order to show how the function works with missing values
loans$"Account Balance”[1:10] <- NA
loans$"Duration of Credit (month)"[c(13, 15)] <- NA
it <- interaction.transformer(db = loans,
rf = c("Account Balance”, "Duration of Credit (month)"),
target = "Creditability”,
min.pct.obs = 0.05,
min.avg.rate = 0.01,
max.depth = 2,
monotonicity = TRUE,
create.interaction.rf = TRUE)
names(it)
it[["tree.info"]]
tail(it[["interaction"]1])
table(it[["interaction”]][, "rf.inter"], useNA = "always")

kfold.idx Indices for K-fold validation

Description

kfold. idx provides indices for K-fold validation.

Usage

kfold.idx(target, k = 10, type, seed = 2191)
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Arguments

target Binary target variable.

k Number of folds. If k is equal or greater than the number of observations of
target variable, then validation procedure is equivalent to leave one out cross-
validation (LOOCV) method. For stratified sampling, k is compared with fre-
quencies of 0 and 1 from target. Default is set to 10.

type Sampling type. Possible options are "random” and "stratified".

seed Random seed needed for ensuring the result reproducibility. Default is 2191.

Value

The command kfold. idx returns a list of k folds estimation and validation indices.

Examples

suppressMessages(library(PDtoolkit))

data(loans)

#good-bad ratio

prop.table(table(loans$Creditability))

#random k-folds

kf.r <- kfold.idx(target = loans$Creditability, k = 5, type = "random”, seed = 2191)
lapply(kf.r, function(x) prop.table(table(loans$Creditability[x[[2]]11)))

#stratified k-folds

kf.s <- kfold.idx(target = loans$Creditability, k = 5, type = "stratified”, seed = 2191)
lapply(kf.s, function(x) prop.table(table(loans$Creditability[x[[2]1]1)))

kfold.vld K-fold model cross-validation

Description

kfold.vld performs k-fold model cross-validation. The main goal of this procedure is to generate
main model performance metrics such as absolute mean square error, root mean square error or area
under curve (AUC) based on resampling method.

Usage
kfold.vld(model, k = 10, seed = 1984)

Arguments
model Model in use, an object of class inheriting from "glm”
k Number of folds. If k is equal or greater than the number of observations of

modeling data frame, then validation procedure is equivalent to leave one out
cross-validation (LOOCYV) method. For LOOCYV, AUC is not calculated. De-
fault is set to 10.

seed Random seed needed for ensuring the result reproducibility. Default is 1984.
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Value

The command kfold.vld returns a list of two objects.
The first object (iter), returns iteration performance metrics.
The second object (summary), is the data frame of iterations averages of performance metrics.

Examples

suppressMessages(library(PDtoolkit))

data(loans)

#run stepFWD

res <- stepFWD(start.model = Creditability ~ 1,
coding = "WoE",
db = loans)

#check output elements

names(res)

#textract the final model

final.model <- res$model

#print coefficients

summary (final.model)$coefficients

#print head of coded development data

head(res$dev.db)

#calculate AUC

auc.model (predictions = predict(final.model, type = "response”, newdata = res$dev.db),
observed = res$dev.db$Creditability)

kfold.vld(model = final.model, k = 10, seed = 1984)

loans German Credit Data

Description

The German Credit Data contains data on 20 variables and the classification whether an applicant is
considered a Good or a Bad credit risk for 1000 loan applicants. Name of the columns are used as
give in the source file. Note that subset of those data is available also in *'monobin’ package (gcd)
and used for some examples in "PDtoolkit’ package.

Usage

loans

Format

An object of class data. frame with 1000 rows and 21 columns.

Source

https://online.stat.psu.edu/stat857/node/215/
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38 num.slice

normal.test Multi-period predictive power test

Description
normal.test performs multi-period testing of PD model predictive power. This procedure can be
applied on the level of the rating grade as well on the portfolio level.

Usage

normal.test(pdc, odr, alpha = 0.05)

Arguments

pdc Numeric vector of calibrated probabilities of default (PD).

odr Numeric vector of observed default rates.

alpha Significance level of p-value for implemented tests. Default is 0.05.
Value

The command normal. test returns a data frame with estimated difference between odr and pdc,
test statistics, standard error of the test statistics, selected significance level, p-value of test statistics
and finally the test results.

References

Basel Committee on Banking Supervision (2005). Studies on the Validation of Internal Rating
Systems, working paper no. 14.

Examples

set.seed(678)
normal.test(pdc = rep(0.02, 5),
odr = runif(5, 0.02, 0.03))

num.slice Slice numeric variable

Description

num.slice implements manual discretization of numeric vector for a given boundaries. This pro-
cedure is one of the helper functions which are handy for the model monitoring phase (i.e. after
model implementation).
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Usage
num.slice(x, mapping, sc = c(NA, NaN, Inf, -Inf), sc.r = "SC")

Arguments
X Numeric vector to be discretized.
mapping Data frame with compulsory columns: x.min and x.max which represent the
discretized boundaries.
sc Numeric vector with special case elements. Default values are c(NA, NaN, Inf,
-Inf).
sc.r Character vector used for replacement of special cases. If supplied as one ele-
ment vector, it will be recycled to the length of sc. Default value is "SC".
Value

The command num. slice returns vector of discretized values and coded special cases.

Examples

suppressMessages(library(PDtoolkit))
data(gcd)
X <- gcd$maturity
#tartificially add some special values
x[1:5] <= Inf
x[6:7] <= NA
#perform monotonic grouping in order to get bins' boundaries
mbin <- sts.bin(x = x, y = gcd$qual, sc.method = "separately”)
mbin[[1]]
#slice numeric variable
sn <- num.slice(x = x,
mapping = data.frame(x.min = mbin[[1]1$x.min[-c(1, 2)],
x.max = mbin[[1]11$x.max[-c(1, 2)1),
sc = c(NA, NaN, Inf, -Inf),
sc.r = "SC")
#compare automatic and manual binning
table(mbin[[2]], useNA = "always")
table(sn, useNA = "always")

nzv Near-zero variance

Description

nzv procedure aims to identify risk factors with low variability (almost constants). Usually these
risk factors are expertly investigated and decision is made if they should be excluded from further
modeling process.

nzv output report includes the following metrics:
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* rf: Risk factor name.

* rf.type: Risk factor class. This metric is always one of: numeric or categorical.
* sc.num: Number of special cases.

* sc.pct: Percentage of special cases in total number of observations.

* cc.num: Number of complete cases.

* cc.pct: Percentage of complete cases in total number of observations. Sum of this value and
sc.pct is equal to 1.

e cc.unv: Number of unique values in complete cases.

e cc.unv.pct: Percentage of unique values in total number of complete cases.

e cc.lbl.1: The most frequent value in complete cases.

* cc.frq.1: Number of occurrence of the most frequent value in complete cases.

* cc.Ibl.2: The second most frequent value in complete cases.

* cc.frq.2: Number of occurrence of the second most frequent value in complete cases.

 cc.fqr: Frequency ratio - the ratio between the occurrence of most frequent and the second
most frequent value in complete cases.

* ind: Indicator which takes value of 1 if the percentage of complete cases is less then 10% and
frequency ratio (cc.fqr) greater than 19. This values can be used for filtering risk factors
that need further expert investigation, but user are also encourage to derive its own indicators
based on reported metrics.

Usage
nzv(db, sc = c(NA, NaN, Inf, -Inf))

Arguments
db Data frame of risk factors supplied for near-zero variance analysis.
sc Numeric or character vector with special case elements. Default values are
c(NA, NaN, Inf, -Inf).
Value

The command nzv returns the data frame with different matrices needed for identification of near-
zero variables. For details see Description section.

Examples

suppressMessages(library(PDtoolkit))

data(loans)

#artificially add some special values
loans$"Account Balance”[1:10] <- NA

rf.s <- nzv(db = loans, sc = c(NA, NaN, Inf, -Inf))
rf.s
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power Power of statistical tests for predictive ability testing

Description

power performs Monte Carlo simulation of power of statistical test used for testing the predictive
ability of the PD rating model. It covers fours tests: the binomial, Jeffreys, z-score and Hosmer-
Lemeshow test. This procedure is applied under assumption that the observed default rate is the
true one and it is used to check if calibrated PDs are underestimated for the binomial, Jeffreys, and
z-score. Therefore, for the cases where observed default rate is lower than the calibrated PD, the
power calculation is not performed and will report the comment. For the Hosmer-Lemeshow test is
used to test if the calibrated PD is the true one regardless the difference between the observed and
calibrated portfolio default rate.

Usage

power(rating.label, pdc, no, nb, alpha = .05, sim.num = 1000, seed = 2211)

Arguments

rating.label  Vector of rating labels.

pdc Vector of calibrated probabilities of default (PD).

no Number of observations per rating grade.

nb Number of defaults (bad cases) per rating grade.

alpha Significance level of p-value for implemented tests. Default is 0.05.

sim.num Number of Monte Carlo simulations. Default is 1000.

seed Random seed needed for ensuring the result reproducibility. Default is 2211.
Details

Due to the fact that test of predictive power is usually implemented on the application portfolio, cer-
tain prerequisites are needed to be fulfilled. In the first place model should be developed and rating
scale should be formed. In order to reflect appropriate role and right moment of tests application,
presented simplified example covers all steps before test implementation.

Value

The command power returns a list with two objects. Both are the data frames and while the first
one presents power calculat